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We investigate theoretically the transport properties of a mesoscopic system driven by a sequence of rect-
angular pulses applied at the contact to the input �left� lead. The characteristics of the current which would be
measured in the output �right� lead are discussed in relation with the spectral properties of the sample. The
time-dependent currents are calculated via a generalized non-Markovian master equation scheme. We study the
transient response of a quantum dot and of a narrow quantum wire. We show that the output response depends
not only on the lead-sample coupling and on the length of the pulse but also on the states that propagate the
input signal. We find that by increasing the bias window the new states available for transport induce additional
structure in the relaxation current due to different dynamical tunneling processes. The delay of the output
signal with respect to the input current in the case of the narrow quantum wire is associated to the transient
time through the wire.
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I. INTRODUCTION

Time-dependent transport measurements at the nanoscale
provide important insight into the intrinsic properties of
semiconductor structures such as relaxation and dephasing
times1 and play a crucial role in single-shot spin read-out
schemes.2 Consequently transient response of quantum struc-
tures to pulsed signals gains interest from experimental point
of view. Recently Naser et al.3 measured the time-dependent
current through a quantum point contact when a pulse gen-
erator is coupled to the input lead. The output signal was
measured for different amplitudes and rise times of the pulse.
The decay of the output current was roughly exponential and
it was suggested that such a device could be used as a mi-
crowave circuit element. In another recent experiment Lai et
al.4 performed transient current measurements for a Ge quan-
tum dot when trapezoidal voltage pulses were applied to one
electrode. The transient current mimics the pulse shape and
the extracted time-dependent occupation number in the sys-
tem follows an accumulation/depletion cycle.

From the theoretical point of view the transient currents
have been calculated by various methods. Stefanucci et al.5,6

combined the Keldysh formalism and the density-functional
theory to study the response of a nanostructure to a time-
dependent bias between the leads. In the partitioning ap-
proach the transient currents induced through a few-level
quantum dot by a modulation of the contacts between the
leads and the sample was calculated in Ref. 7 and a scatter-
ing theory of the time-dependent magnetotransport in a long
quantum wire was proposed in Ref. 8.

These studies were essentially focused on understanding
the transient regime and the onset of the steady state. There-
fore the time-dependent driving used in the calculations did
not describe pulsed signals, but rather an initial switching
stage followed by a constant, time-independent value. In par-
ticular sudden coupling or smooth coupling lead to qualita-
tively different output signals. Another problem considered
in the time-dependent transport calculations is the quantum

pumping.9–12 In this case one obtains averaged currents
through an unbiased system which is perturbed by two time-
dependent potentials oscillating out-of-phase.

In this work we discuss transport calculations for a meso-
scopic sample driven out of equilibrium by both a constant
bias applied between the leads and a fast oscillating signal
applied at the contact between the lead and the sample. If the
signal has a rectangular shape the setup is in some sense
similar to the pump-and-probe configuration used in the tran-
sient spectroscopy experiments of Fujisawa et al.1 The time-
dependent signal was applied on the sample and the main
aim was to extract the spin relaxation time by pushing one
excited state into the transport window during the pulse.

Here we discuss the transient response of the system from
a different angle: if a sequence of rectangular pulses that
modulate the coupling to the left lead is viewed as an input
signal then one can study the propagation of this signal
trough the system and the corresponding current in the right
�i.e., output� lead. Our problem is therefore closer to the
experiments by Naser et al.3 and Lai et al.4 Besides the very
ambitious goal of assembling quantum dot structures in com-
plex mesoscopic circuits operating such as quantum gates we
believe there is another important motivation for such a
study. The transient response of the sample to the modulation
of the contact is a consequence of the internal electron dy-
namics which depends crucially on the electronic states par-
ticipating in transport. The point is that by changing the bias
applied on the system one selects different states in the trans-
port window and then the output current may carry important
information about the electron dynamics in the sample. Even
if the level structure of the sample may be known from other
type of measurements, the tunneling rates associated to each
quantum state or the propagation properties of the “orbitals”
are not easily understood.

We aim at describing the following transport experiment
through a mesoscopic structure: the contact between the
sample and the left lead opens and closes periodically by
applying rectangular pulses on the metallic gates that define
the contact region. At the same time the contact between the
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sample and the right lead gradually opens. Then each time
the left contact closes the electrons in the sample can only
escape into the right lead. These relaxation processes of vari-
ous states in the sample depend mainly on the corresponding
tunneling rates which in turn are given by the coupling of the
states to the output contact. In real samples the states that
participate in transport have different tunneling coefficients
and therefore it is not obvious that the relaxation current
follows a simple exponential decay. We show that the tran-
sient response of the sample is in general more complex.
Sometimes the output current may look exponential, but of-
ten may also carry a fine structure reflecting the presence of
several quantum states propagating through the sample and
various relaxation processes corresponding to transitions be-
tween these states and the right lead.

A recent attempt to describe rectangular pulses in quan-
tum dots was made by Oh et al.13 Their sample model was a
two-level quantum dot and for transport calculations they
used rate equations with time-dependent tunneling coeffi-
cients. Instead, our calculations are done using the general-
ized non-Markovian master equation �GME� approach pre-
sented in one of our recent works.14 We take into account the
geometry of the system and its spectral properties which de-
termine the tunneling coefficients and therefore the currents
driven by the external bias. The generalized master equation
method is well known from quantum optics.15–17 The appli-
cation of the GME method to quantum transport received
attention only in the last years in the context of transient
currents, measurement theory or full-counting statistics or
coherent control of transport �see, e.g., Refs. 18–25�.

The content of the paper is organized as follows: the for-
malism is briefly explained in Sec. II, the numerical simula-
tions are reported in Sec. III, and the main conclusions are
included in Sec. IV.

II. GENERALIZED MASTER EQUATION METHOD

In this section we introduce the Hamiltonian of the sys-
tem, the underlying notations and we summarize the main
equations derived in our previous work Ref. 14. We consider
a mesoscopic system which is coupled to two leads at t=0
and described by the following second-quantized Hamil-
tonian �h.c. denotes Hermitian conjugation�:

H�t� = �
l=L,R

� dq�l�q�cql
† cql + �

n

Endn
†dn

+ �
l=L,R

�
n
� dq�l�t��Tqn

l cql
† dn + h.c.� , �1�

where cql
† , cql, and dn

†, dn are creation and destruction opera-
tors for electrons with momentum q and energy �l�q� in the
lead l, and with energy En in the sample, respectively. The
labels L and R denote the left and right lead. The second-
quantized form of the Hamiltonian is constructed from the
states �n of the isolated sample and from the generalized
eigenfunctions �q

l describing a semi-infinite lead. The third
term is the tunneling Hamiltonian and contains the time-
dependent switching functions �l�t� and the coupling matrix

elements Tqn
L,R associated to each pair of states ��q

L/R ,�n� from
the leads and the sample. The pulses applied at the contact
region between the left lead and the samples are simulated
by the function �L which by construction has a rectangular
shape. Although our formalism could also be implemented
for a continuous model �see Ref. 26� here we use a lattice
model for which the matrix elements are given by �see Ref.
14�:

Tqn
l = Vl�q

l��0l��n�il� , �2�

where Vl is the coupling strength between the lead l and the
sample, 0l is the site of the lead l which couples to the con-
tact site il in the sample. The eigenfunctions of the sample �n
and the corresponding energies En are numerically computed
by diagonalizing the single-particle Hamiltonian of a two-
dimensional lattice with N sites �see for example Eq. �1�
from our previous work Ref. 14�. The generalized eigenfunc-
tions of the semi-infinite lead �q

l and its spectrum �l�q� are
known analytically:

�q
l �m� =

sin�q�m + 1��
	�tL sin q

, �l�q� = 2tL cos q , �3�

q being the momentum �q� �0,��� and tL the hopping con-
stant on leads. We emphasize that even in this simple lattice
model the coupling matrix elements introduced in Eq. �2�
depend both on the energy and of the localization of the
sample states. A similar model for the transfer Hamiltonian
was proposed by Maddox et al.27 We stress that while �q

l and
�n do not overlap the coupling Tqn is not vanishing. More-
over, our method goes beyond the wide band limit because
the energy dependence is present through the q dependence
of �q and also through the eigenfunctions �n �i.e., states with
different energies En have different coupling to the leads�.

The statistical operator of the open quantum system is

denoted by W and solves the Liouville equation: iẆ�t�
= �H�t� ,W�t��, with the initial condition W�t=0�=�L�R�S.
This means that before the coupling the sample is described
by the statistical operator �S defined just below, and the leads
are characterized by equilibrium distributions �L,R with dif-
ferent chemical potentials �L��R.

The many-body states of the system are described by the
sequence of occupation numbers of the single-particle states
��n� for the isolated system. We shall denote the many-body
states by Greek letters, i.e., 
	�= 
i1

	 , i2
	 , . . . , in

	. . .� and by in
	 the

occupation number of the n-th single-particle state. If the
initial state of the disconnected sample is 
	0� then �S
= 
	0��	0
. For example, if two electrons are situated on the
lowest levels at t
0 we have 
	0�= 
110. . . .�.

Following the main lines of the superoperator method28,29

we take the partial trace of W over the Fock space of the
leads and end up with a master equation for the reduced
density operator ��t�=TrL TrR W�t� with the initial condition
��t=0�=�S up to second order in the tunneling Hamiltonian:
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�̇�t� = −
i

�
�HS,��t�� −

1

�2 �
l=L,R

�
0

�

dq�l�t���Tl,�ql�t�� + h.c.� ,

�4�

where we have introduced the operators �see Ref. 14 for
details�:

�ql�t� = e−itHS�
t0

t

ds�l�s�ql�s�ei�s−t��l�q�eitHS,

ql�s� = eisHS�Tl
†��s��1 − f l� − ��s�Tl

†f l�e−isHS,

Tl�q� = �
�,�

T��
l �q�
����
 ,

T��
l �q� = �

n

Tnq
l ��
dn

†
�� . �5�

It is clear that T��
l �q� describes the “absorption” of electrons

from the leads to the system and changes the many-body
states of the latter from � to �. Observe that T��

l �q��0 only
if the number of electrons in the many-body states � and �
differ by one. f l denotes the Fermi function in the lead l. The
difference between the chemical potentials defines the bias
applied across the sample eV=�L−�R. Observe also the
presence of loss and gain terms in ql.

We also define a set of relevant states located in the en-
ergy window �Emin,Emax�, where Emin��R��L�Emax. This
‘active’ window includes only those states of the sample that
are relevant to the transport. More precisely, Emin is chosen
such that the levels with lower energy are fully occupied
both prior to the coupling of the leads, i.e., for t
0, and also
after the coupling began, at t�0, in the presence of the bias.
Similarly, Emax is selected such that all states with higher
energy are permanently empty. Consequently the states out-
side this energy window do not contribute to the current.
Based on this picture we conclude that it is sufficient to
compute an “effective” reduced density matrix by taking into
account only those many-body configurations resulting from
the single-particle states within the active window. Also for
the simplicity of notation we shall specify in the many-body
states only the occupation numbers of the single-particle
states within the active window. Of course, the validity of
this truncation should be checked in the numerical simula-
tions by gradually enlarging the active window �Emin,Emax�
until the calculated currents become stable.

In principle some of the levels above the bias window
could contribute to the transient currents, if the correspond-
ing coupling to the leads is high and if the amplitude of the
time-dependent modulations is sufficiently large to allow
tunneling to these levels. We have checked numerically that
this is not the case for the results presented in Sec. III. On the
other hand, the cotunneling processes which involve coher-
ent tunneling of two electrons are known to be important at
rather large coupling to the leads, which is not the case here.
We also recall that the master equation is derived by taking

into account only quadratic terms of HT in the integrodiffer-
ential equation and as such describes only sequential tunnel-
ing.

The time evolution of the charge residing in the active
region is related to the diagonal elements of the reduced
density matrix:

�QS�t�� = �
n

�
	

in
	�	
��t�
	� .

The continuity equation relates the rate of change in �QS� to
the difference between the total currents in the two leads, i.e.,
d�QS�t�� /dt=JL�t�−JR�t�. If the switching functions �L,R
would be both smooth and approaching a constant, the sys-
tem eventually evolves to a steady state where the identity
JL=JR holds. This is not the case here as �L��R and conse-
quently the charge inside the sample varies. Using the GME,
Eq. �4�, one can easily identify the contribution of each level
n to the currents in the left and right lead:

Jl = �
n

Jl,n,

Jl,n = −
1

�2�
	

in
	�

0

�

dq�l�t��	
�Tl,�ql�t�� + h.c.
	� , �6�

where in
	=0,1 is the occupation number of the n-th single-

particle state inside the active window. The sign of the net
currents in the leads is positive if it is oriented from the left
to the right, i.e., JL�0 if the electrons flow from the left lead
toward the sample and JR�0 if they flow from the sample
toward the right lead. During the transient regime the sign of
the net currents may change in time.

The GME is numerically solved through the Crank-
Nicolson method �see the details in Ref. 14�. Throughout this
work the Coulomb interaction effects are not considered; fur-
ther discussion on this point is given at the end of Sec. III.

III. NUMERICAL RESULTS

The first system we consider is a rectangular two-
dimensional lattice having 25�20 sites. The corresponding
Hamiltonian has 500 eigenvalues En and eigenvectors �n,
n=1,2 , . . . ,500, as many as the number of sites. The energy
unit is given by the hopping parameter in the sample tD
=�2 /2m�a2, where a is the lattice constant and m� is the
electron effective mass in GaAs. The spectrum of the iso-
lated sample is contained in the range �−2tD ,2tD�. For a
=8 nm our lattice describes a 200 nm�160 nm sample.
We fix kT=0.1 meV which corresponds to a low tempera-
ture T=1.15 K. The sites of the system are denoted by i and
are specified by the pair of coordinates �ix , iy�.

In order to describe the gradual coupling of the leads to
the sample and the periodic modulation of the left contact we
define analytically the coupling functions �l�t�. We want the
coupling to the right lead to be established at t=0 and evolv-
ing smoothly to a constant value. As in our previous work we
use a Fermi-like function �R=1–2f�t� where f�t�= �e�t

+1�−1 and the parameter � defines the smoothness of the
coupling. The rectangular pulses applied to the left lead have
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a period T=4�T1−T0�, and are tailored from the functions
f�t� and 1–2f �T0 and T1�T0 are two input parameters, k is
the period index and we use the notation tk=kT�:

�L�t� =
1 – 2f�t�, if t � T0,

f�t − T1 − tk−1� ,

if t � �T0 + tk−1,T0 + tk−1 +
T

2
� ,

�1 – 2f�t − T1 − tk−1 − T/2�� ,

if t � �T0 + tk−1 +
T

2
,T0 + tk� .

� �7�

Before t=T0 the coupling to the leads increases smoothly
from 0 and we take T0 such that �L,R saturate before T0. Note
that around t=T1�L decreases and then vanishes; the cou-
pling is restored again around t=T1+T /2. It is easy to see
that the pulse length �p=T /2. In the numerical simulations
the pulse length �p is varied by changing the shift T1 of the
Fermi functions. As a consequence on the first period �i.e.,
t� �T0 ,T0+T�� the function �L drops later for larger values
of T1.

We denote the pulse length by �p. We think this kind of
time-dependent perturbation is a reasonable model of an ex-
periment in which the sample is smoothly coupled to the
leads with different chemical potentials, possibly reaching an
equilibrium state before the pulses begin to act.

A problem related to the one we studied here was consid-
ered by Jauho et al.30 in a pioneering work on time-
dependent transport. The transient current through a resonant
level calculated via the Green-Keldysh formalism in the
presence of a rectangular bias shows a relaxation pattern af-
ter the pulse ends. Besides the more detailed description of
the many-level structure and of the contacts, a major differ-
ence between the two models is that in our work the bias is
constant, the time dependence comes from the modulation of
the contact region between the leads and the sample, while in
the work of Jauho et al. the spectrum of the leads becomes
time-dependent. Transient calculations for a step-like bias
were also reported by Stefanucci and Almbladh5 in partition-
free approach �see, e.g., Fig. 7 in their paper�.

The currents depend strongly on the placement of the con-
tacts. In this example the two leads are attached at diagonally
opposite corners of the sample. We first choose the chemical
potentials �L=−3.65 and �R=−3.70. Then our sample has
nine energy levels below �R, and as we checked they do not
contribute significantly to the transport. The chosen active
region contains two states within the bias window which are
E10 and E11 and two more states above �L, which are E12 and
E13. Instead of the label n=10,11,12,13 for the states in the
active window �in the present example�, we will also use the
label k=1,2 ,3 ,4, respectively.

In Figs. 1�a�–1�d� we show the site occupation probabili-
ties 
�n�i�
2 for the active states. We emphasize that the
middle state with n=12 or k=3, Fig. 1�c�, is weakly coupled
to the leads while the other ones have a larger, but still mod-
erate coupling.

Figures 2�a�–2�c� show the time-dependent total currents
in both leads for different pulse lengths. We also indicate

qualitatively the pulsed signal as given by the function �L�t�
�arbitrary units are used on the corresponding axis�. In the
beginning the system is coupled to the leads and both con-
tacts are kept open for a time t0. Then the left contact is
modulated by pulses while the other one is left open. The
three signals do not drop at the same time because of the
different shifts T1 used in the construction of �L �we have
T1=40.7 ps, 44 ps, and 51.8 ps�. As the sample dynamics
adapts to the input signal a periodic regime is already estab-
lished after two pulses. The first observation is that for very
short pulses ��p=7.5 ps in Fig. 2�a�� the output current JR
has a triangular shape although the modulating signal is rect-
angular. In addition JR does not vanish when the left lead is
disconnected, resembling the charging-relaxation character-
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FIG. 1. �Color online� The localization probabilities associated
to the four states included in the active window. E10=−3.68�k=1�,
E11=−3.67�k=2�, E12=−3.63�k=3�, and E13=−3.62�k=4� �in
tD units�. The left lead is located near the lower left corner of
the sample and the right lead coupled close to the upper right
corner.
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istic of a capacitor. The charge is first absorbed from the left
lead when the contact is switched on, and then only partially
expelled into the right lead, when the contact to the left lead
is off, i.e., even in the absence of a driving bias. The decay of
the output signal looks exponential, but after one complete
cycle, i.e., before the left contact opens again, the magnitude
of the output current in the right lead is still considerable.
The current in the left lead JL decays much faster when the
contact is turned off, following closer the modulation poten-
tial at the contacts. We notice that right after the left contact
opens the current is injected in the sample quite fast but the
current in the right lead increases slower.

When the pulse length increases the shape and the ampli-
tude of the output current change considerably. JR reaches
maxima even before the pulse is turned off and remains al-
most constant during the second half of the pulse, while at
the same time the input current decrease. However, at �p
=15 ps the output current still shows an exponential decay
and does not reproduce the input signal. A different response
to the pulse train is obtained at �p=30 ps. In this case the

output current decays first exponentially and then stays flat
until the left contact opens again.

Comparing the behavior of the input currents in all three
cases we see that in the first half of the 30 ps pulse the
current is similar to the one that develops in the full length of
the 15 ps pulse. The saw-tooth profile of the current in Fig.
2�a� is also present in the first half of the 15 ps pulse. This is
due to the fact that as long as the sample is coupled to both
leads it has the transient behavior which is already observed
during the initial charging time. It is also clear that if the
pulse length is too short the left lead does not feed enough
charge to the sample in order to maintain a constant output
current.

An estimate of the pulse length which generates an output
current with almost a rectangular shape can be taken from
the first transient period �t� t0�; that pulse length should be
at least equal to the time at which the output current become
nearly equal.

In Fig. 3�a� we compare the total charge accumulated on
the two states within the bias window for the three pulse
lengths. As the pulse length increases more charge is trans-
ferred through the system and therefore the output current
increase. One should notice that for the 30 ps pulse the
charge first relaxes exponentially but then almost linearly.
Since the current is essentially the derivative of the charge
with respect to time this means the current in the right lead is
first exponential and then constant, as we have already
learned from Fig. 2�c�.

The knowledge of the reduced density operator provides
also information on the charge density in each site i of the
sample which is given by:

�QS�i,t�� = �
n,n�

�
	,	�

�n
��i��n��i��		��t��	�
dn

†dn�
	� . �8�

We present in Figs. 3�b� and 3�c� two snapshots of �QS�i , t��
for the configuration considered in Fig. 2�b�. The charge dis-
tribution reflects the geometry of the two states within the
bias window �see Figs. 1�a� and 1�b�� and provides interest-
ing information on the electronic propagation in the system
�note however that a “classical” picture of electrons’ trajec-
tory is not possible for the small system considered here�.
The electrons enter the sample from both leads and propa-
gate mostly along the x axis. At later times t=37 ps a
“snake”-like pattern of �QS�i , t�� emerges. We stress that the
propagation along the “diagonal” of the sample is not guar-
anteed. Given the geometry of the second state �see Fig.
1�b�� it may very well happen that the charge is simply lo-
calized in that region, without a net flow toward the output
lead.

We also find that when the contact to the left lead is
closed the “snake” pattern is interrupted, which suggests that
most of the charge crosses the sample along the edges, fol-
lowing the state shown in Fig. 1�a� �not shown�.

In Figs. 4�a�–4�c� we show the currents obtained from the
same sample when the chemical potential of the left lead is
pushed to �L=−3.6 and thus two more states enter into the
bias window, i.e., those with k=3 and k=4. When comparing
to Fig. 2 we observe additional “shoulders” developing in the
output current. These shoulders are produced by the states
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FIG. 2. �Color online� �a�–�c� Total currents in the input �left�
and output �right� leads for the 25�20 sites system for different
pulse lengths: �a� �p=7.5 ps, �b� �p=15 ps, and �c� �p=30 ps. The
bias window covers only two single-particle states. In Figs. 2�b� and
2�c� we show the currents for longer times than in Fig. 2�a� in order
to capture the same number of pulses. The signal applied on the
input contact is also qualitatively shown with a dashed line. The
coupling strength VL=VR=4, �L=−3.65, and �R=−3.7.
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included in the bias window during the relaxation into the
right lead. The relaxation processes depend on the coupling
between the states and the lead. Since one of the two states is
only poorly coupled to the leads, i.e., the one with k=3 �see
Fig. 1�c��, the shoulder is actually produced by the state with
k=4.

In the following we compare the partial currents in the
right lead for the two and four states configurations in the
case of the ultrashort 7.5 ps pulse. The partial currents Jl,k are
calculated with Eq. �6�. Figure 5�a� gives the output currents
and confirms that the third state does not contribute signifi-
cantly to the transport. Both JR,1 and JR,2 increase during the
entire pulse length, although with a lower slope in the second
part. Rather surprisingly, in this time interval JR,4 decreases.
In the relaxation interval the situation is the opposite: JR,1
and JR,2 are monotonously decreasing while the current of
the fourth state considerably increases in the second half of
the relaxation interval. The currents entering the sample from
the left lead �see Fig. 5�b�� also have interesting features: JL,1

and JL,2 rise suddenly to a maximum value, while JL,4 in-
creases more slowly and does not reach a maximum within
the pulse. This suggests that the two lowest states absorb
quickly more charge from the left reservoir. By looking at
the occupation numbers shown in Fig. 6�a� one convinces
himself that this is indeed the case. The occupation of the
fourth level increases much more slowly than N1 and N2.

The behavior of JL,4 and JR,4 can be explained by the
dynamic tunneling processes described by the gain and loss
terms of the solution of the master equation via the matrix
ql. Suppose, for example, that at time s� t an electron tun-
nels from the input lead into the lowest state of the bias
window, k=1. At instant t the same electron may tunnel out
into the right lead. But it is also possible that this electron
remains in the sample, while another electron, from another
state, say the fourth, tunnels back into the left lead; escaping
into the left lead from the fourth state is more likely than in
the right lead because the chemical potential �L is much
closer to E13 �k=4� than �R. Repeated tunneling from high-
est state of the sample toward different leads and back into
the sample lead to the charging of the lower states at the
expense of the higher ones. Consequently the output currents
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FIG. 3. �Color online� �a� The total charge accumulated on the
two states from the bias window for the three pulse lengths consid-
ered in Figs. 2�a�–2�c�. �b� and �c� The charge distribution �QS�i , t��
inside the sample at t=1.48 ps �b�, and �c� t=37 ps. The pulse
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associated to the lower states 1 and 2 are increasing, see Fig.
5�a�, whereas the output current JR,4 decreases. Note also that
the net input current JL,4 is smaller than JL,1 and JL,2 because
there are more electrons tunneling out from the level k=4.

In contrast, when the pulse is turned off, the charge on the
fourth level leaves the sample only via the output lead and
therefore JR,4 increases as shown in Fig. 5�a�. On the other
hand the tunneling processes from the left lead to the lowest
levels are switched off and so JR,1 and JR,2 decrease on the
relaxation interval.

For comparison we also show in Figs. 5�c� and 6�b� the
output currents for the two-level configuration �k=1,2� and
the occupation numbers. For the two-level configuration the
partial occupation numbers display similar charging/
relaxation shapes. This happens because these two particular
states are equally coupled to the leads and hence the input
signal propagates almost identically through both states to-
ward the right lead. Remarkably, a similar behavior of the
time-dependent occupation number was obtained from the
experimental data by Lai et al.4 In order to get more infor-
mation on the relevant tunneling processes we have analyzed
the diagonal elements �i.e., the populations� of the reduced

density operator. It useful to introduce a shorter notation for
the many-body states by interpreting the occupation numbers
as decimal numbers written as binary strings �but reading
them in the reverse order, and adding 1�. For example 
1�
= 
0000�, 
2�= 
1000�, 
3�= 
0100�, etc.

Figure 7�a� shows the populations corresponding to the
single-particle sector of the Fock space. We also give in Fig.
7�b� the most relevant two-particle configurations. The
vacuum state 
0000� has the largest probability �11 which is
not shown. At t=0 it is 1 because the sample is initially
empty, then during the charging period it drops to about 0.6,
but it increases back to about 0.7 during the relaxation inter-
val. From Fig. 7�a� we infer that �i� the configurations 
1000�
and 
0100� are the most probable in the transient regime; �ii�
the corresponding probabilities �22 and �33 decay exponen-
tially �qualitatively speaking� during the relaxation, but �99
which is the probability of the state 
0001� does not decay
exponentially. This state is even stable for some time in the
relaxation regime, while the probabilities for the states

1000� and 
0100� decrease. This is another way of seeing
that the 4th state relaxes later into the right lead. �iii� �55 is
only slowly increasing and has only small oscillations due to
the time-dependent signal, due to the weak coupling to the
leads. The two-particle configurations shown in Fig. 7�b�
have very small probability because the system is poorly
charged during the ultrashort pulse considered here.

For completeness we give in Figs. 8�a�–8�c� the off-
diagonal elements of the reduced density matrix, known as
“coherences,” which are related to the transitions between
different states. For example �29 �Fig. 8�a�� describes the
process in which electrons can tunnel from the 4th state into
the leads and then back to the sample on the 1st state. We see
that the real and imaginary parts of the coherences have os-
cillations and change sign. Moreover, the oscillations are
more complex if the matrix element implies single-particle
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states separated by other energy levels. Indeed, by comparing
Re �23 and Re �29 we see that the latter displays two minima
and two maxima in the charging time interval, while Re �23
has only one minimum. This feature suggests again that elec-
trons make transitions via intermediate single-particle states
as follows: initial state→ intermediate state→ leads→ final
state. We have checked that coherences between states with
only one intermediate state in between �e.g., Re �39� have
only one maximum and one minimum.

Another remark is that the oscillations of �23 have a
higher amplitude than the other two coherences, which is
consistent to the fact that the two configurations 
2�= 
1000�
and 
3�= 
0100� are the most probable ones in the stationary
regime. Figure 8�c� shows that the third level is very weakly
coupled to the level below, which is expected since that state
is poorly coupled to the leads. By increasing the pulse width
the number of oscillations during the pulse generally in-
creases as more and more transitions may occur. Also, two-
particle configurations will develop, while the probability of
the single-particle states decrease �not shown�. It should be
mentioned here that in the non-Markovian approach the co-
herences also contribute to the currents because they are
coupled to the diagonal elements of �.

An interesting question is whether there are other types of
pulse that could be reproduced in the output current. We
present in Figs. 9�a�–9�c� numerical results for triangular
pulses applied to the same sample when only two states con-
tribute to the transport �i.e., �L=−3.65 and �R=−3.7�. We
also used the same periods of the switching function �L in
order to compare the results. The half width of the triangular
pulse equals the length of the rectangular one. The relaxation

characteristics are less obvious in this case because the cou-
pling to the left lead increases and decreases linearly, not
abruptly as before. The triangular shape of the pulse is rather
well reproduced in the output current except for a slight
asymmetry of its edges. The amplitude is also smaller.

We continue with similar results for a different sample, a
narrow 40 nm�160 nm quantum wire described by a 5
�20=100 sites lattice. The system has now 100 eigenstates
and it is connected to two three-channel leads on both nar-
row sides. For simplicity we consider uncoupled channels,
which mean the electrons cannot jump between the channels.
The chemical potentials of the leads are �L=−3 and �R=
−3.6; they cover three states now, E3=−3.53, E4=−3.38, and
E5=−3.19 �or k=1,2 ,3 respectively� which we also consider
as the active window. The coupling of these states to the
leads is much stronger than in the previous case. Figure 10�a�
shows the input/output characteristics for a pulse of length
�p=7.5 ps. We see that the total currents become equal in the
second half of the pulse. This means that the stationary state
is practically reached before the left contact is switched off.
After that the output current is delayed with respect to the
input current. This delay corresponds to the propagation of
electrons along the sample. We have checked this by estimat-
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ing the time needed by one electron having the energy E4
=2tL cos q to travel along the wire; we obtain that the trav-
eling time is around 2 ps which agrees with the numerical
results.

The input current has a sharp transient maximum as the
left contact opens, but this behavior is not transferred to the
output current which is rather flat. Again the relaxation input
current has a ‘step’ after a fast decay. The occupation num-
bers of the three states within the bias window are shown in
Fig. 10�b� and explain the origin of the step. The two higher
states depopulate quite fast in the first half of the relaxation
interval, but at some point their depletion suddenly slows
down. This suggests that the relaxation rates are governed by
time-dependent tunneling rates depending on the coupling to
the leads, but also on the occupation number of the states.
Remark that the bias window becomes empty before another
pulse rises up.

The rise time of the pulse can be varied in experiments
�see Ref. 3�. In our model the rise time depends on the
smoothness parameter � used to create the pulses. In Fig.
10�c� we show the total input and output currents for a pulse

with a larger rise time corresponding to �=0.25. The tran-
sient maxima in the input current soften and so does the
additional shoulder in the relaxation current. Note however
that during the pulse the output current takes the same value
�around 60 pA� and it is still delayed with respect to the
input current.

Finally we would like to comment on the Coulomb inter-
action which is neglected here. The numerical results show
that the occupation number of the levels within the active
window is quite low for the rather large samples considered
�see, e.g., Figs. 6�a� and 6�b��. In this case one expects that
the Coulomb interaction between electrons located in the ac-
tive states causes very small changes in the transient cur-
rents. On the other hand, the Coulomb repulsion generated
by the inactive states which are fully occupied could be im-
portant, leading at least to a Hartree shift of the active levels.
However, the relaxation processes and the modulation of the
output current should be qualitatively similar.
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FIG. 9. �Color online� �a�–�c� Total currents in the input �left�
and output �right� leads for the 25�20 sites system for triangular
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IV. CONCLUSIONS

We have analyzed the transient response of a two-
dimensional nanosystem to a sequence of periodic rectangu-
lar pulses which modulate the contact to the source lead. By
solving the generalized non-Markovian master equation for
the reduced density matrix we have been able to discuss the
dependence of the input/output characteristics on the pulse
length for two specific systems: a rather large quantum dot
and a narrow quantum wire. We have considered a pump-
and-probe setup in which the contact to the left lead opens
and closes periodically while the right lead is always con-
nected to the system. When the contact is switched off the
drain current reflects the relaxation processes in the sample.
We have discussed these processes by analyzing the single-
particle currents, diagonal, and off-diagonal elements of the
reduced density matrix. At a low temperature the phonon
effects could be neglected and the main relaxation processes
are back-and-forth tunnelings to and from the leads.

In both cases �the dot and the wire� we have found that
the pulse length can be adjusted such that the shape of the
pulse can be reproduced by the output signal. By increasing
the chemical potential of the source lead the current profile
in the output lead develops additional oscillations related to

the relaxation of the higher-energy states included in the bias
window. In the case of a narrow quantum wire a delay of the
output current with respect to the input signal has been ob-
tained.

This study was partly motivated by the recent experiments
of Naser et al.3 and Lai et al.4 Although those experiments
were done with larger and longer pulses our results qualita-
tively agree with the reported features of the transient re-
sponse. In particular the time-dependent occupation number
clearly show a charging/relaxation behavior as in the work of
Lai et al.4
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